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Hierarchical 
ORAMs

[Goldreich’87]
[GO’96]
[KLO’12]

Oblivious RAM is a cryptographic primitive for 
provably obfuscating access patterns to data.
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Tree-based 
ORAM
[SCSL’11]

[SDSCFRYD’13]

Bandwidth Overhead:=
Data transferred in oblivious case

Data transferred in non-oblivious case



Can we do 
better?

Best known ORAM achieves
O(log2 N/log log N) overhead [KLO’12]



Can we do 
better?

Best known ORAM achieves
O(log2 N/log log N) overhead [KLO’12]

Path ORAM partially solves this problem
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YES
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Stack / Queue
Map (AVL 

tree,   B tree) Heap

ORAM: O(log2 N/log log N)



Bounded-degree tree
The effective overhead is O(log N)

Inspired by [GGHJRW’13]

Speedup 

Bandwidth overhead 12x – 16x

Circuit size 10x – 14x

Compared with Path ORAM; data size 230

Stack / Queue
Map (AVL 

tree,   B tree) Heap
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Access patterns with locality
Overhead:

2-dimensional grid

O(log1.5 N)

Deque, doubly linked list

O(log N)

General graphs

O(12d log2-1/d N)
d: doubling dimension of the graph



Access patterns with locality
Overhead:

2-dimensional grid

O(log1.5 N)

Deque, doubly linked list

O(log N)

General graphs

O(12d log2-1/d N)
d: doubling dimension of the graph

Bandwidth overhead speedup for 
deque, doubly linked list - 9x

Compared with Path ORAM; data size 230



Open source 
implementation 

on a garbled 
circuit backend 

coming soon

Stack / Queue

Map (AVL tree)

Heap

Deque

Doubly linked 
list

Oblivious Data Structures: 
[WNLCSSH’14]

Thank You!
kartik@cs.umd.edu


