
Oblivious Data Structures
Xiao Shaun Wang, Kart ik Nayak, Chang L iu , T-H. Hubert
Chan, E la ine Sh i , Emi l Stefanov, Yan Huang

Hierarchical
ORAMs

[Goldreich’87]
[GO’96]
[KLO’12]

Oblivious RAM is a cryptographic primitive for
provably obfuscating access patterns to data.

Hierarchical
ORAMs

[Goldreich’87]
[GO’96]
[KLO’12]

Bandwidth Overhead:=
Data transferred in oblivious case

Data transferred in non-oblivious case

Hierarchical
ORAMs

[Goldreich’87]
[GO’96]
[KLO’12]

Tree-based
ORAM
[SCSL’11]

[SDSCFRYD’13]

Bandwidth Overhead:=
Data transferred in oblivious case

Data transferred in non-oblivious case

Can we do
better?

Best known ORAM achieves
O(log2 N/log log N) overhead [KLO’12]

Can we do
better?

Best known ORAM achieves
O(log2 N/log log N) overhead [KLO’12]

Path ORAM partially solves this problem

Can we do
better?

Best known ORAM achieves
O(log2 N/log log N) overhead [KLO’12]

Can we do
better for

restricted access
patterns?

Best known ORAM achieves
O(log2 N/log log N) overhead [KLO’12]

RAM

Bounded-degree
trees

Access patterns
with locality

RAM

Bounded-degree
trees

Access patterns
with locality

Can we do better
for these

restricted access
patterns?

Bounded-degree
trees

Access patterns
with locality

Can we do better
for these

restricted access
patterns?

YES

Bounded-degree tree

Stack / Queue

Bounded-degree tree

Stack / Queue
Map (AVL

tree, B tree) Heap

Bounded-degree tree
The effective overhead is O(log N)

Stack / Queue
Map (AVL

tree, B tree) Heap

Bounded-degree tree
The effective overhead is O(log N)

Stack / Queue
Map (AVL

tree, B tree) Heap

ORAM: O(log2 N/log log N)

Bounded-degree tree
The effective overhead is O(log N)

Inspired by [GGHJRW’13]

Speedup

Bandwidth overhead 12x – 16x

Circuit size 10x – 14x

Compared with Path ORAM; data size 230

Stack / Queue
Map (AVL

tree, B tree) Heap

Access patterns with locality

Access patterns with locality
Overhead:

2-dimensional grid

O(log1.5 N)

Deque, doubly linked list

O(log N)

General graphs

O(12d log2-1/d N)
d: doubling dimension of the graph

Access patterns with locality
Overhead:

2-dimensional grid

O(log1.5 N)

Deque, doubly linked list

O(log N)

General graphs

O(12d log2-1/d N)
d: doubling dimension of the graph

Bandwidth overhead speedup for
deque, doubly linked list - 9x

Compared with Path ORAM; data size 230

Open source
implementation

on a garbled
circuit backend

coming soon

Stack / Queue

Map (AVL tree)

Heap

Deque

Doubly linked
list

Oblivious Data Structures:
[WNLCSSH’14]

Thank You!
kartik@cs.umd.edu

