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Everybody loves (virtual black-box / indistinguishability)
obfuscation. . .

so we implemented it!

Implementation combines ideas from various obfuscation papers and uses
CLT multilinear map scheme

It is slow. . . but not as slow as you might think

Example: To obfuscate a 16-bit point function (i.e., 16 OR gates) with
52 bits of security using an Amazon EC2 machine with 32 cores:

• Obfuscation time: ≈ 7 hours
• Evaluation time: ≈ 3 hours
• Obfuscation size: 31 GB

=⇒ it’s almost nearly practical
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Code is available: https://github.com/amaloz/ind-obfuscation

ePrint version should be up at some point

For the cryptanalysts in the audience: We have an obfuscated 14-bit
point function on Dropbox1 — learn the point and you win!

Contact info: {dapon,yhuang,jkatz,amaloz}@cs.umd.edu

Thank you

1https://www.dropbox.com/s/85d03o0ny3b1c0c/point-14.circ.obf.60.zip
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