
Implementing Cryptographic Program
Obfuscation

Daniel Apon1 Yan Huang1 Jonathan Katz1

Alex J. Malozemoff1

1University of Maryland

Presented at CRYPTO Rump Session, Santa Barbara, California, USA,
August 17–21, 2014.



Everybody loves (virtual black-box / indistinguishability)
obfuscation. . .

so we implemented it!

Implementation combines ideas from various obfuscation papers and uses
CLT multilinear map scheme

It is slow. . . but not as slow as you might think

Example: To obfuscate a 16-bit point function (i.e., 16 OR gates) with
52 bits of security using an Amazon EC2 machine with 32 cores:

• Obfuscation time: ≈ 7 hours
• Evaluation time: ≈ 3 hours
• Obfuscation size: 31 GB

=⇒ it’s almost nearly practical

2 / 3



Everybody loves (virtual black-box / indistinguishability)
obfuscation. . . so we implemented it!

Implementation combines ideas from various obfuscation papers and uses
CLT multilinear map scheme

It is slow. . . but not as slow as you might think

Example: To obfuscate a 16-bit point function (i.e., 16 OR gates) with
52 bits of security using an Amazon EC2 machine with 32 cores:

• Obfuscation time: ≈ 7 hours
• Evaluation time: ≈ 3 hours
• Obfuscation size: 31 GB

=⇒ it’s almost nearly practical

2 / 3



Everybody loves (virtual black-box / indistinguishability)
obfuscation. . . so we implemented it!

Implementation combines ideas from various obfuscation papers and uses
CLT multilinear map scheme

It is slow. . . but not as slow as you might think

Example: To obfuscate a 16-bit point function (i.e., 16 OR gates) with
52 bits of security using an Amazon EC2 machine with 32 cores:

• Obfuscation time: ≈ 7 hours
• Evaluation time: ≈ 3 hours
• Obfuscation size: 31 GB

=⇒ it’s almost nearly practical

2 / 3



Everybody loves (virtual black-box / indistinguishability)
obfuscation. . . so we implemented it!

Implementation combines ideas from various obfuscation papers and uses
CLT multilinear map scheme

It is slow. . .

but not as slow as you might think

Example: To obfuscate a 16-bit point function (i.e., 16 OR gates) with
52 bits of security using an Amazon EC2 machine with 32 cores:

• Obfuscation time: ≈ 7 hours
• Evaluation time: ≈ 3 hours
• Obfuscation size: 31 GB

=⇒ it’s almost nearly practical

2 / 3



Everybody loves (virtual black-box / indistinguishability)
obfuscation. . . so we implemented it!

Implementation combines ideas from various obfuscation papers and uses
CLT multilinear map scheme

It is slow. . . but not as slow as you might think

Example: To obfuscate a 16-bit point function (i.e., 16 OR gates) with
52 bits of security using an Amazon EC2 machine with 32 cores:

• Obfuscation time: ≈ 7 hours
• Evaluation time: ≈ 3 hours
• Obfuscation size: 31 GB

=⇒ it’s almost nearly practical

2 / 3



Everybody loves (virtual black-box / indistinguishability)
obfuscation. . . so we implemented it!

Implementation combines ideas from various obfuscation papers and uses
CLT multilinear map scheme

It is slow. . . but not as slow as you might think

Example: To obfuscate a 16-bit point function (i.e., 16 OR gates) with
52 bits of security using an Amazon EC2 machine with 32 cores:

• Obfuscation time: ≈ 7 hours
• Evaluation time: ≈ 3 hours
• Obfuscation size: 31 GB

=⇒ it’s almost nearly practical

2 / 3



Everybody loves (virtual black-box / indistinguishability)
obfuscation. . . so we implemented it!

Implementation combines ideas from various obfuscation papers and uses
CLT multilinear map scheme

It is slow. . . but not as slow as you might think

Example: To obfuscate a 16-bit point function (i.e., 16 OR gates) with
52 bits of security using an Amazon EC2 machine with 32 cores:

• Obfuscation time: ≈ 7 hours

• Evaluation time: ≈ 3 hours
• Obfuscation size: 31 GB

=⇒ it’s almost nearly practical

2 / 3



Everybody loves (virtual black-box / indistinguishability)
obfuscation. . . so we implemented it!

Implementation combines ideas from various obfuscation papers and uses
CLT multilinear map scheme

It is slow. . . but not as slow as you might think

Example: To obfuscate a 16-bit point function (i.e., 16 OR gates) with
52 bits of security using an Amazon EC2 machine with 32 cores:

• Obfuscation time: ≈ 7 hours
• Evaluation time: ≈ 3 hours

• Obfuscation size: 31 GB
=⇒ it’s almost nearly practical

2 / 3



Everybody loves (virtual black-box / indistinguishability)
obfuscation. . . so we implemented it!

Implementation combines ideas from various obfuscation papers and uses
CLT multilinear map scheme

It is slow. . . but not as slow as you might think

Example: To obfuscate a 16-bit point function (i.e., 16 OR gates) with
52 bits of security using an Amazon EC2 machine with 32 cores:

• Obfuscation time: ≈ 7 hours
• Evaluation time: ≈ 3 hours
• Obfuscation size: 31 GB

=⇒ it’s almost nearly practical

2 / 3



Everybody loves (virtual black-box / indistinguishability)
obfuscation. . . so we implemented it!

Implementation combines ideas from various obfuscation papers and uses
CLT multilinear map scheme

It is slow. . . but not as slow as you might think

Example: To obfuscate a 16-bit point function (i.e., 16 OR gates) with
52 bits of security using an Amazon EC2 machine with 32 cores:

• Obfuscation time: ≈ 7 hours
• Evaluation time: ≈ 3 hours
• Obfuscation size: 31 GB

=⇒ it’s almost nearly practical

2 / 3



Code is available: https://github.com/amaloz/ind-obfuscation

ePrint version should be up at some point

For the cryptanalysts in the audience: We have an obfuscated 14-bit
point function on Dropbox1 — learn the point and you win!

Contact info: {dapon,yhuang,jkatz,amaloz}@cs.umd.edu

Thank you

1https://www.dropbox.com/s/85d03o0ny3b1c0c/point-14.circ.obf.60.zip

3 / 3

https://github.com/amaloz/ind-obfuscation
https://www.dropbox.com/s/85d03o0ny3b1c0c/point-14.circ.obf.60.zip


Code is available: https://github.com/amaloz/ind-obfuscation

ePrint version should be up at some point

For the cryptanalysts in the audience: We have an obfuscated 14-bit
point function on Dropbox1 — learn the point and you win!

Contact info: {dapon,yhuang,jkatz,amaloz}@cs.umd.edu

Thank you

1https://www.dropbox.com/s/85d03o0ny3b1c0c/point-14.circ.obf.60.zip

3 / 3

https://github.com/amaloz/ind-obfuscation
https://www.dropbox.com/s/85d03o0ny3b1c0c/point-14.circ.obf.60.zip


Code is available: https://github.com/amaloz/ind-obfuscation

ePrint version should be up at some point

For the cryptanalysts in the audience: We have an obfuscated 14-bit
point function on Dropbox1 — learn the point and you win!

Contact info: {dapon,yhuang,jkatz,amaloz}@cs.umd.edu

Thank you

1https://www.dropbox.com/s/85d03o0ny3b1c0c/point-14.circ.obf.60.zip
3 / 3

https://github.com/amaloz/ind-obfuscation
https://www.dropbox.com/s/85d03o0ny3b1c0c/point-14.circ.obf.60.zip


Code is available: https://github.com/amaloz/ind-obfuscation

ePrint version should be up at some point

For the cryptanalysts in the audience: We have an obfuscated 14-bit
point function on Dropbox1 — learn the point and you win!

Contact info: {dapon,yhuang,jkatz,amaloz}@cs.umd.edu

Thank you

1https://www.dropbox.com/s/85d03o0ny3b1c0c/point-14.circ.obf.60.zip
3 / 3

https://github.com/amaloz/ind-obfuscation
https://www.dropbox.com/s/85d03o0ny3b1c0c/point-14.circ.obf.60.zip

