Public Verifiable Randomness Beacon for Random Sample Elections

Christopher D. Nguyen, David Chaum, Alan T. Sherman, Aggelos Kiayias

> CRYPTO 2014 Rump Session August 19, 2014

Random Sample Elections (RSE)

http://rs-elections.com/

Participants

David Chaum	Pedro A.D. de Rezende	Maciej Kosarzecki	Pance Ribarski	Brian Sutin
Deborah Hurley	Markus Duermuth	Christopher Nguyen	Mark Ryan	Douglas Wikström
Richard Carback	James Honaker	Hannu Nurmi	Peter Schwabe	Lirong Xia
Jeremy Clark	Aggelos Kiayias	Christof Paar	Alan Sherman	Filip Zagórski
Michael Clarkson	Maciej Kosarzecki	David Parkes	Emin Gün Sirer	Bingsheng Zhang

Progress on Six Pillars

RSE i	mplement	ation				Statistical analysis and simulations	
Audit software implementations					Trustworthy public randomness		
Cryptographic models (UCF)					Vote selling game theoretic analysis		
0%	<mark>25%</mark>	<mark>50%</mark>	75%	100%	<mark>%</mark>		

Goal and Motivation

Provide a source of bits that are

- uniformly distributed
- forward unpredictable
- end-to-end auditable

Why trust the beacon? Why not check it yourself?

Applies to any system/protocol requiring trustworthy public random bits. (e.g., random challenges)

In RSE, random sample selection and audit challenges. Requires randomness from entropy sources of varying quality, latency, and throughput.

Fine Print: Not appropriate for secret values. (e.g., crypto keys)

Bits that are done

Identified candidate entropy sources:

- Financial data (stocks)
- Scientific data (weather)
- Information archives (web archives)

Note: Incorporation of different sources allows us to meet varying requirements on quality, latency, and throughput.

Built scrapers for US stocks and weather. Web archive scraper under development.

Have a voter-palatable explanation of how we use this randomness in Random Sample Elections.

Bits that are done

Identified candidate entropy sources:

- Financial data (stocks)
- Scientific data (weather)
- Information archives (web archives)

Note: Incorporation of different sources allows us to meet varying requirements on quality, latency, and throughput.

Facebook is a lot like ancient Egypt: people writing on walls; worshipping cats.

(Source: Unknown)

Bits in progress

- Prototype \rightarrow Production
 - Expand beacon from stocks to other entropy sources.
 - Rework data formats to handle multiple sources and provide better linking between random bits and the source data.
- Mathematical and adversarial models
- Entropy estimation
- Extractor algorithms development

Challenging bits

Our entropy sources are not independent.

They have correlation and even self-correlation.

• How do we estimate entropy and build extractors?

(Source: xkcd.com)

Challenging bits

Our entropy sources are not independent.

They have correlation and even self-correlation.

• How do we estimate entropy and build extractors?

The extractor and verifiers may disagree.

- Entropy quantity vs. measurement consistency
- Measurement synchronization.
 - Ex: website changes while the extractor and verifiers are archiving it.
- How do we reconcile these inconsistencies?

We welcome you to join!

For information about the RSE project contact David Chaum <<u>david@chaum.com</u>> or Deborah Hurley <<u>dhurley@well.com</u>>

Possible major scholarships for BS, MS, and PhD students via UMBC:

NSF Scholarship for Service (SFS)

UMBC Cyber Scholars

Contact Alan Sherman <<u>sherman@umbc.edu</u>>

Also accepting new customers to use our entropy!