Optimally Resilient and Adaptively Secure MPC with Low Communication Locality

Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser, Rafail Ostrovsky and Vassilis Zikas

> August 19, 2014 CRYPTO 2014: Rump Session

https://eprint.iacr.org/2014/615

Starting point: [Boyle, Goldwasser, and Tessaro, TCC 2013]

MPC for *n* (many many many) parties with low *communication locality*

- total number of point-to-point channels each party uses polylog(n)
- round complexity polylog(n)

Assumptions

- PKI and CRS
- static adversary

•
$$t < (\frac{1}{3} - \epsilon)n$$

・ロト ・四ト ・ヨト ・ヨト

Starting point: [Boyle, Goldwasser, and Tessaro, TCC 2013]

MPC for *n* (many many many) parties with low *communication locality*

- total number of point-to-point channels each party uses polylog(n)
- round complexity polylog(n)

Assumptions

- PKI and CRS
- static adversary

•
$$t < (\frac{1}{3} - \epsilon)n$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Question 1

Can we get optimal resiliency $t < \frac{n}{2}$?

Question 2

Can we tolerate adaptive adversary?

This work

Yes to both!

Wutichai Chongchitmate Adaptively Secure MPC with Low Communication Locality

・ロト ・回ト ・ヨト ・ヨト

э

Question 1

Can we get optimal resiliency $t < \frac{n}{2}$?

Question 2

Can we tolerate adaptive adversary?

This work

Yes to both!

Wutichai Chongchitmate Adaptively Secure MPC with Low Communication Locality

・ロト ・四ト ・ヨト ・ヨト

3

MPC for <i>n</i> parties	
[BGT 2013]	Our Work
<i>polylog(n)</i> locality and rounds	<i>polylog(n)</i> locality and rounds
PKI & CRS	PKI & SKI*
$t < (rac{1}{3} - \epsilon)n$	$t < rac{1}{2}n^{**}$
static adversary	adaptive adversary

* SKI = Symmetric Key Infrastructure ** optimal even in a fully connected communication

伺 と く ヨ と く ヨ と …

э

The core idea

- We encode the communication patterns into the SKI:
 - Every party uses his symmetry keys to decide his set of neighbors
- Using expander-graph machinery, we show that it is infeasible *even* for an adaptive adversary to discover these patterns and disconnect two honest parties.

Full version: https://eprint.iacr.org/2014/615

伺 ト イヨト イヨト