Bits Security of the CDH Problems over Finite Fields

Mingqiang Wang

Tao Zhan

Haibin Zhang

Shandong University wangmingqiang@sdu.edu.cn

Shandong University zhantao@moe.edu.cn

UC Davis hbzhang@ucdavis.edu

One-Way Functions and Hard-Core Predicates

- One-way function $f: D \rightarrow R$
- Hard-core predicate $P: D \rightarrow \{0,1\}$

For \forall PPT adversary APr[A(f(x)) = P(x)] $\leq 1/2 + negl$.

Generic vs. Specific Approaches for Hard-Core Predicates

- Generic approaches:
 -working for any one-way functions
 -Goldreich-Levin (1989), Näslund (1996)
- Specific approaches:
 -discrete logs (1984)
 -RSA,Rabin (1988)

-CDH (finite fields)? A long-standing open problem

FGPS (2013): First Known Results over Finite Fields

- Fazio, Gennaro, Perera, Skeith III, FGPS, Crypto 2013
- Basic Fact: F_{p^2} is isomorphic to F[x]/(h(x)) $g \in F_{p^2}$ can be written as $g_0 + g_1 x$ or (g_0, g_1)
- Partial CDH problem over F_{p^2} Compute $[g^{ab}]_1$ given $g, g^a, g^b \in F_{p^2}$
- Main result of FGPS: Every single bit in [g^{ab}]₁ is hard-core over a random representation of the field F_{p²}.

Open Problems Remain

• Old open problem:

1. Specific hard-core predicates over finite fields for regular CDH problems.

New open problems from FGPS:
 2. hardness of Partial-CDH problem over F_{p²}
 3. results hold for F_{p^t} (t>1)?

Our Results: Resolving the Open Problems

- 1. Partial-CDH is as hard as CDH over F_{p^2} .
- 2. All CDH bits over F_{p^2} are hard-core.
- 3. Define a generalized class of problems---*d*-th CDH problems over F_{p^t} (t>1) for 0≤*d*≤t-1:

Compute $[g^{ab}]_d$ given $g, g^a, g^b \in \mathsf{F}_{\mathsf{p}^{\mathsf{t}}}$

We prove they are *all* as hard as CDH.

- 4. Almost all individual bits over F_{pt} (t>1) are hard-core.
- 5'. Advanced list-decoding approach.

FGPS

- Result: Half the bits in F_{p²} are hard-core for a weaker CDH problem.
- Question: Hardness of Partial-CDH?

 Question: Hard-core predicates over F_{pt}?

Ours

- 1.Stronger: All the bits in F_{p²} are hard-core for regular CDH problem.
- 2. Anwer: Partial-CDH and its generalization (*d*-th CDH) are as hard as CDH.
- 3. Answer: Almost all bits in F_pt are hard-core.
- 1+3: Proving the existence of specific hard-core bits for CDH over finite fields.

Still Two Open Problems

- 1. From "almost all" to "all" bits over F_{pt} (t>1)?
- 2. CDH hard-core predicates over F_p?

Bits Security of the CDH Problems over Finite Fields

• Currently as a technical report:

http://csiflabs.cs.ucdavis.edu/~hbzhang/cdh.pdf

• Comments are appreciated! Thank you!