New Graded Multilinear Maps from Lattices

Craig Gentry, Sergey Gorbunov, and Shai Halevi

Graded Encoding

- Approximating Multilinear Maps:

 An encoding "hides" a plaintext value
 Encoded values can be added, multiplied
 Upto degree-k expressions, but no more
 Can check if an expression equals zero
- Only two constructions so far [GGH,CLT]

 Encoding is ~ homomorphic encryption
 Zero-testing using a defective secret key

Our New Scheme

- Plaintext elements are LWE secrets
 o In matrix form S, must be small
- Encoding "related" to LWE instances

 Can be viewed as instances of [GSW13]
- "Zero-test param" is a random matrix
 More like a public key than a secret key
 Can be checked at any level upto k (not just at level k)

The Main Idea

• Encoding a small secret $S_{n \times n}$ relative to a random $A_{m \times n}$ via a small $C_{m \times m}$ s.t.

$C \times A \approx A \times S$

• A is an "approximate eighenspace" for C

- Encodings can be added, multiplied $\circ (C_1 + C_2)A \approx A(S_1 + S_2)$ $\circ C_1C_2A \approx AS_1S_2$
- C encodes 0 if CA is small

Encoding Levels

- k + 1 random matrices A_0, A_1, \dots, A_k \circ Only A_0 needs to be published
- Level-*i* encoding of *S* is a small *D* s.t.

$D \times A_j \approx A_{j+i} \times S, \forall j \le k-i$

- Can still add same-level encoding
- Multiplication adds the levels
- D encodes 0 (at any level) if DA is small